SERVER
SIDE
SWIFT

THRDEDITION _
TIBOR BODEGS

PRAGTICAL

SERVER
SIDE
SWIFT

BY TIBOR BODECS

THIRD EDITION

VERSION1.5.0
PUBLISHED BY TIBOR BODECS
RDOF APRIL 2023

3 A

CHAPTER3
GETTNGFSTARTED WITH SWIFTHTHL

Intthis chapter we're going to build our first website using the SwiftHtml library. We're going
to generate HTML code through Swift by creating template files using a Domain Specific
Language (DSL). You'll learn about how to connect SwiftHtml with Vapor and how to render
HTML by using context variables to provide additional template data. You'll learn about the
syntax of SwiftHtml, how to iterate through objects, how to check optional variables, and
how to extend a base template and'provide a reusable framework for our website. We'll
build a simple blog layout with a post list and detail pages.

RENDERING TEMPLATES USING SWIFTHTML

The SwiftHtml library has multiple library products. The core library is called SwiftSgml,
which is an‘abstractinterface for the other SGML-based libraries. The SwiftHtml product
contains most of the necessary HTML tags, the SwiftSvg library can helpiyouto dynamically
buildSVG,tags, the SwiftSitemap product can generate a sitemapxm! file . and SwiftRss
dependency can help you with proper RSS feed generation.

Youscan use SwiftHtml to generate dynamic HTML pages forafront-end website. Using a
DSL-based approach has its benefits: first of all, you don't have to write HTML code by hand,
but.you can use Swift and take advantage of the compiler to.ecatch errors. Separating the
template layer and using a DSL is always a good thing, and you can reuse the template files
and keep away the view layer from the rest of your business logic.

Using SwiftHtml is relatively simple.If you're familiar with the HTML standard it's going to be
very straightforward to work with this small utility library. SwiftHtml tries to follow the
standards as much as possible;so hopefully, it's going to feel quite natural to build your
templates. It also gives youtype safety,$0 you won't be able to misspell a tag or misplace a
closing tag.

Let's continue with the Vapor toolbox-based example and alter the contents of the package.
We need to add the SwiftHtml package as a dependency to our Package.swift file.

FILE: Packageswift

// switt=toels-vegsion:5.7
import PackageDescription

Tet package = Package(
name . “myProject",
platforms: [

.mac0S(.v12)
1

dependencies: [
. package(
url: "https://github.com/vapor/vapor",
from: "4.70.0"

N4

rget(name: "App", dependencies: [
.product(name: "Vapor", package: "vapor")
.product(name: "SwiftHtml", package: "s
.product(name: "SwiftSvg", package: "sw

’
.executableTarget(name: "Run", dependencies:
.testTarget(name: "AppTests", dependencies:
.target(name: "App"),
.product(name: "XCTVapor", package: "vapor"),

command again, or wait until Xcode f es
process is completed, we should be re 1
ines in the routes.swift file:

Now you should run the swi
the new package depen
render HTML files wit W

FILE: Sources/A

import Vapor
import Swi

Title("Hello, World!")

{
tes.get("hello") { req —> Response in
doc = Document(.html) {

Body {
H1("Hello, World!'s

}
let body = DocumentRenderer(

minify: false,
indent: 4

.render(doc)

ublic files

: Sources/App/configure.swift
import Vapor

public func configure(_ app: Application) throws {

app.middlewaremuse (
FileMiddleware (
pubt@eDirectory: app.directory.publicDirectory
)

)

try ‘routes(app)

If you don't have a Public directory under your project folder, please create one, since we're
going to place our assets there later on. This is also a good time to create other folders we'll
use during this chapter. We're going to.€reate two modules inside the App directory.

Note: A Module is a common interface that can,boot a collection of components required to
implement a particular function of the application. For example, in a CRUDS module, there's
a page to show the starting index of existing records (S), then one to create a new recordhl
(C), one to update an existing.record (U), and one to save the updated record... well, you get
the idea. All the codeffor a given functionality would usually be together in one module. I'm
not saying that it would'bedn one file: on the contrary, I'm saying that the sub-directories
and Swift files comprising the functionality would be under one directory. The examples here
are Sources/App/Modules/Blog and Sources/App/Modules/Web. (See the tree structure
below.)

Use the commands:

cd ~/myProject

mkdir. —p Public

mkdir -p Public/css

mkdir =p Public/img

mkdir -p Public/img/posts

mkdir -p Public/js

mkdir -p Resources

mkdir -p Sources/App/Controllers

mkdir -p Sources/App/Template

mkdir -p Sources/App/Models

mkdir -p Sources/App/Modules

mkdir -p Sources/App/Modules/Web

mkdir -p Sources/App/Modules/Web/Controllers
mkdir -p Sources/App/Modules/Web/Templates

mkdir -p Sources/App/Modules/Web/Templates/Html
mkdir -p Sources/App/Modules/Web/Templates/Contexts
mkdir -p Sources/App/Modules/Blog

mkdir -p Sources/App/Modules/Blog/Controllers
mkdir -p Sources/App/Modulés/Blog/Templates
mkdir -p Sources/App/Modules/Blog/Templates/Contexts
mkdir -p Sources/App/Modules/Blog/Templates/Html
mkdir -p Sources/App/Middlewares

Your directory structure should look like this now:

F— Dockerfile
—Package. resolved
|— Package.swift
—_Public

| css

| — img

| | “— posts

| — js z

— Resource

Models i
Modules

— Blog
| | — Controllers

| | “— Templates

I — Contexts
11 L— Html

| “— Web

| — Controllers
| L— Templates

| — Contexts
| L— Html

— Template
— configure.swi

i ware is a function that will be executed eve|
o) e, if the browser asks for a file such as a stylesheet pt, or an image, the
iddleware can look it up in the public directory. If the file exists, the content will be
returned as a response. This is great for.serving static assets, but please note that
everything inside the configured dir: y will be publicly available through the server, so
don't place sensitive data there.

e the request handler. So in

In the next part of this exam i sing a request handler block and the built-in
DocumentRenderer fro rn a Response with the necessary headers. A
response object is so sents an HTTP response. It has a status code, so

header information, a a body. In our case, we simply set the proper content-typ
header for our H utput, and we can use a 200 status code to indicate th
response was OK. entRenderer simply turns our HTML DSL structure i

text; you ¢ i ur output, or set the indent size if you want.

an abstract view layer that we could use to render tem
ore type safety, so we're going to create our own t e

Sources/App/Template/TemplateRepresentable.swift

Vapor
il t SwiftSgml

public protocol TemplateRepresentable {

N4

@TagBui
func re Request) —> Tag

}

This i only one method that can return a Tag obje itself is called
der it'll receive the current Request object so we'll be it inside our

t e files. The next step is to create the actual ren whi going to be very similar

e method that we've already had in our configuration fil

FILE: Sources/App/Template/TemplateRenderer.swift

import Vapor
import SwiftHtml

public struct TemplateRenderer {
var req: Request

init(_ req: Request) {
self.req = req

+

public func rend
_ template: Tel epresentable,
minify =

status: .ok,
headers: [

"Content-Type": "text/html; charset=utf
]l

body: .init(string: body)

ocumentRenderer (
T minify,

emplate, which is a TemplateRepresentable
set additional minification and indentation options

e renderer.

late/Request+Template.swift

ublic Request {
plates: TemplateRenderer { .init(self) }

e go back to our router file, we can create a new. ate render it using the
.templates extension.

FILE: Sources/App/routes.swift

import Vapo
import Swift

struc ter TemplateRepresentable {
1 ring
fun nder(_ req: Request) —> Tag {
1 {

Head {
Title(title)

Body {
Hi(title)

}

func routes(_ app: Application) thr
app.get { req async in

"It works!"
+
re sponse in
ml(
"Hello, World!")
)
+
}
As yc MyTemplate struct conforms to the Temp
we've | ed a new contextual variable called title. W his context to our

en we initialize it, and we can access the ti the r method. The request
so available in the render method, but at t im 't use it.

e can call the req.templates.renderHtml method usi ur template instance to
rn an HTML response.

TEMPLATES AND GONTEX

So far, we're good wit p erer, so now let's tackle one other issue by creating
a reusable index tem going to be the base of every web page that we're goin
render later on. Si oing to use a modular approach to build everything, thi

we created the M with a Web module inside of it.

| of our templates inside the Templates/Html directory;

We're going

public var context: WebIndexContext

public @hi t WebIndexContext) { 2
sel context
+
p ender(_ req: Request) -> Tag {
{
Head {
Meta()
.charset("utf-8")
Meta()
.name(.viewport)
.content("width=device-width, initial-s =1")
Link(rel: .shortcutIcon)
.href("/img/favicon.ico")
.type("image/x-i
Link(rel: .stylesh
Jhref("https:/
beta.44/feather.min.css")

Link(rel: .stylesheet
Jhref("/@ss/web.css

ivr.net/gh/feathercms/feather-core@l.0.0-

Title(c .)

}
Body {
Mai

text.message)

("wrapper")

y v
his is our index HTML template. If you're familiar with SwiftUl, you should notice that the
r r method uses a result builder to create the necessa ucture. The syntax itself is

very simple: every single HTML tag is available as a Tag subclass, so the naming convention
is the same. You can add attributes th h modifiers and the entire tree will be rendered

ice both in light and dark mode. If you want to know m
components, please take a look at the docs.

line ocal CSS file
css/web.css file. In

describes the visual

sing the W3Schools

nce. We're going to place our local style overrides
the Public/css folder, create a web.css file. A CSS is a st
style of an HTML document. You can learn more about this fo

website. O ill be quite empty for now, since the external sty t us
pretty much we need to display a nice-looking, but still r asi ite.
touch .Css

oing to define the context object to use its i a les inside our

ndexContext and it's a
y simple struct.

FILE: Sources/App/Modules/Web/Templates/Contexts/WeblndexContt
public struct WebIndexContext {

public let title: String
public let message: String

public init(
title: String,
message: String

self.title =
self.message

our routes a little bit and return the rendered an HTML
ender a template by using the req.templa der| | method; we

ort Vapor
import SwiftHtml

func routes(_ app: Application) throws {

The final ste

app.routes.get { req —> Response i
req.templates.renderHtml(
WebIndexTemplate(
WebIndexContext (
title: "Home",
message:, i there, me to my page!"

+

}

We can say that a e text is a type-safe data representation of everythi
plate file. Of course, the request object is also availabl
can use it to get dynamic path components or the curr

user, out these kinds of things later on.

and set
headers. The Content-Type will be set to text/html, s can render
as an HTML website. Run the app using the com lin ; but if you're
code, definitely don't forget to set a custom working dir or the server won't
find your templates and public files. Check the previous u'don't know how to set

up a custom working directory.

If yo tis n your local machine, test the app using curl. The d at the end
of the and will run the compile in the background ou use curl in the
ground.
t run &
curl alhost:8080

The response you expect is:

<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="utf-8">
<meta name="viewport" content
<link rel="shortcut
<link rel="styleshee
core@l.0.0-beta.44/feath i

vice-width, initial-scale=1">
favicon.ico" type="image/x-icon">
://cdn.jsdelivr.net/gh/feathercms/feather

ss/web.css">

re, welcome to my page!</hl>

CTRL+C to stop the process

[X5 project, bring the job to the foreground, t se C RLiE
fg

TEMPLATE HIERARGHY

Splitting up templates is goi

be ess if you're planning to build a multi-page

website. We can create re t you can share and render them later on inside
other template files. | ple, we're going to create three separate pages,
First, we have to upda dex template, since that's going to be reused for the entire
website.

FILE: So pp/Med eb/Templates/Html/WeblndexTemplate.swift

import Vapor
impor i ftHt|

H
.width(24)
.height(24)

func menuIcon() —> Svg {

{

Line(x1: 3, yl: 12, x2: 21, y2: 12)
Line(x1: 3, yl: 6, x2: 21, y2: 6)
Line(x1: 3, yl1: 18, x2: 21, y2: 18)

inY: @, width: 24, height: 24)
.stro tColor")

ap("round")

lic var context: WebIndexContext
ar body: Tag

public init(
_ context: WebIndexContext,
@TagBuilder _ builder: () —>
) {
self.context = context
self.body = builder()
+

@TagBuilder
public func render(
_ req: Reques
) —> Tag {
Html {
Head

‘utf-8")

.viewport)
ontent("width=device-width, initial-scale=1")

(rel: .shortcutIcon)
.href("/img/favicon.ico")
.type("image/x-icon")
Link(rel: .stylesheet)
Jhref("https://cdn.jsdelivr.net/gh/f

feather.min.css")

Link(rel: .stylesheet)
.href("/css/web.css")

Title(context.title)

Body {
Header {
Div {
A{
go.png", alt: "Logo")

Input()
. type(.checkbox)
.id("primary-menu-button")

.name("menu-button")

.class("menu-button")
Label {

Svg.menuIcon()

.for("primary-menu-button")

Div {
A("Home")
chref (/™)
.class("selected", req.url.p
A("Blog")
.href("/blog/")
.class("selected", h
A("About")

Shref("#")
.onClick("javascript:ab)

\ 4

inejoin("round")
+
ic struct WebIndexTemplate: TemplateRepresentab‘

eather-core@l.0.0-

"/blog/")

))4
+
.class("menu-items")
+
.id("primary-menu")
}
.id("navigation")

Main {
body

Footer {
Section {
P{
Text("This site is powered by ")
A("Swift"

Sc
t .javascript)
rc("/js/web.js")
+
-us")
+
ajor change: here's the new builder parameter that an pass for the template file.

It's marked with the @TagBuilder result builder, so this means that you can build an
additional HTML structure when callin e init method, and the final tag of that result will be
used inside the main section of the j plate. It's not that complicated when you see it
in use; you can simply create a new tag for your index template through this
builder attribute.

The template structure i S r ur previous version, but we've added a new
header section with a some navigation links that'll help us to transition betwee
the sub-pages. We're e SwiftSvg library from the SwiftHtml package to render
avigation menu icon. It's a standard hamburger menu

ste all the generic Swift HTML code that would be the ere. We!
oin fill the body placeholder with some actual tag defi ino emplates, plus

r the title variable using the context. Please make sure t ou remove the message

variable from the WebIndexContext struct since we don nymore.

ontext {

1 String

We have to move the message in the routes.swift file into the tag builder.

FILE: Sources/App/routes.swift

import Vapor
import SwiftHtml

func routes(_ app: Ap

i there, welcome to my page!")

e're going to download the site logo and the favico
following snippet:

SRC="raw.githubusercontent.com/tib
DST="$HOME/myProject/Public/img/"

—server

As the last compone
files from the Public/j

to run the application.

PAGE TEMPLATE

home template.

ome page will be really simple, but first, we're going to aiw
r

WebHomeContext struct to represent the data that we'

n from :;e GitHub repository using the

-side-swift/main/Assets"

ender later on inside our

N4

leb/Templates/Contexts/WebHomeContext.swift

define our WebHomeTemplate file. The tri t we're going to render
eblndexTemplate with a custom body tag and w i d the index template's
with the title from the home template context.

FILE: Sources/App/Modules/Web/Templates/Html/WebHomeTemplate:

import Vapor
import SwiftHtml

struct WebHomeTemplate: TemplateRe| le
var context: WebHomeCon t

init(
context: We e

self.context

@TagBuilder

itle: context.title
Div { “::EE::”

Section {
Hl(context.title)
P(context.message)

.class("lead")

.1id("home")
.class("container")

.render(req)

It's time to render the . on't have to set a body parameter anymore using
context variable i st handler since it's already defined in the home templat i
is a major differe 1 variables and evaluated blocks. We can say in gene

variables are usua ing from Swift, and blocks will be defined using template

ate adTemplate with a title and message context, and ren
d of manually placing the same code there again and
h this now, but later on, I'll show you examples.

MODULE GONTROLLERS

What makes a module? | already mentioned that a Vapor app canshave models, controllers,
migration'scripts, and many more. A module is something that holds together these
compeonents plus our template and context files. Our veryfirst module is called Web
because it's responsible for rendering the main pages‘of our website.

Until now, we've placed everything inside the configure or routes files, but that's not a very
good approach to separate things. We'll move the entire template render logic from these
files by using a dedicated WebFrontendController object. You can put this controller into a
file with the same name, under a Controllers directory inside the Web module. Usually, most
of the structs and classes have their own dedicated Swift files, you should follow this
convention later on too.

Instead of using request handler completion blocks, you can also create a function that has
the same signature as_the block had;and we can connect this method to the route as a
pointer to handle incoming requests. First, this is our new controller.

FILE: Sources/App/Medules/WebiControllers/WebFrontendController.swift
import Vapor
struct WebFrontendController {

func homeView (
req: Request
) throws -> Response {
reg.templates.renderHtml(
WebHomeTemplate(
Lindit(
title: "Home",
message: "Hi there, welcome to my page."

The next thing that we should do is to make the connection between the router and the
controller. We're not going.to simply put@verything into the routes or the config file; instead,
we'll have a standalone Router. If you'have lots of routes it's a good idea to split them up
into collections by usingthe RouteCollection protocol. This protocol has a boot function that
you have to implement and register the routes using the routes object instead of the.app:

You can use the.same get method on the routes object just like we did beforesThere are
helper functions,defined on the RoutesBuilder that are available for all the HTTP methods
(get, post;put, delete, etc.). You can also group routes by path components or middleware. A
route 'group can,be used to connect endpoints under the same namespace with similar
functions:

You could also enter a specific path component as the first parameter, but in.our case, we'll
simply connect our homeView method from the WebFrontendController to the main
endpoint.

FILE: Sources/App/Modules/Web/WebRouter.swift

import Vapo !
stru outeCollection {
ontroller = WebFrontendController()
: RoutesBuilder
rows {
routes.get(use: frontendController.homeView|

Now we have to boot the router inside the configuration method. This is a nice approach
since you can have multiple routers egister as many as you want. The boot method
needs a route builder, so we can p p.routes property, and that'll just work fine.

FILE: Sources/App/configure.swij
import Vapor
public func configur

_ app: Applicatio
) throws {

app.middleware
Fi idd 1

: app.directory.publicDirectory

boot(routes: app.routes) Q I

n't need the routes.swift file anymore because it w aced by WebRouter.swift.
Delete it like this:

rm Sources/App/routes.swift

Run the application and you should se i le home page rendered by using the two
template files combined. Do to the page yet: we're going to do that one next.

truct WebLinkContext {

ic let label: String
ublic let url: String

public init(
label: String,

N4

rresponding WebLinkTemplate, we can ren
C we could add more properties, such as style
i link is a blank link or not, but for the sake of simp
It's a good experiment for you if you'd like to add more op

eb Context objects; of
boolean value to determine
st start with a label & URL.

FILE: Sources/App/Modules/Web/Templates/| |/WebLinkTemplate.swift

import Vapor
import SwiftHtml

struct WebLinkTemplate: TemplateRepre
var context: WebLinkConte

init(
context: W ext

g

ould also alter the WebHomeContext struct, so we ke advantage of the newly
created link context. We're also going to drop in a new icon property to make our home
page just a bit prettier.

FILE: Sources/App/Modules/Web/Templatt xts/\MebHomeContext.swift

struct WebHomeContext {
let icon: String
let title: String
let message: Strinp
let paragraphs:
let link: WebLi

r home page template to represent the changes that d

FILY e p/Modules/Web/Templates/Html/WebHomeTemplate.swift

im,

r
wiftHtml
str ebHomeTemplate: TemplateRepresentable { c‘

var context: WebHomeContext

init(

N4

) {
Div {

Section {
P(context.icon)
H1l(context.title)
P(context.messag

{
WebIndexTemplate(
.init(title: context.title)

.class("lead")

for paragraph in cont a aphs {
P(parag)

WebL il e(. link).render(req)

ext) and use the render method on the tem o return a tag. The returned Tag
t like any other tag that we can create by han to embed one
plate inside of another.

Please note that we can still use a regular for loop (also it's possible to use if-else) inside the
template file. This is great because we €an iterate through paragraph values and render
them by using the P tag.

FILE: Sources/App/Modules/Frontend/Contr dController.swift

import Vapor

rem ipsum dolor sit amet, consectetur adipiscing elit.",
do eiusmod tempor incididunt ut labore et dolor
{'Ut enim ad minim veniam, quis nostrud exercitation u
Nisi ut aliquip ex ea commodo consequat.",
1,
link: .init(

label: "Read my blog -",

url: "/blog/"

)

return req.templates.renderHtml(
WebHomeTemplate (ctx)

Finally, we have to modify the frontend controller, and of course, we can use.some lorem
ipsum text to display some random text inside the body. As you can see,using template
hierarchiesis quite simple with SwiftHtml, since you canuse a @TagBuilder to provide
additional content for a template, or you can simply render a_template inside another.

THEBLOG LIST

Since we're building an app using a' modular architecture, we can't simply put blog-related
stuff into the Web module. The web module is somewhat special in our case since it
provides us with the main elements to render our website. It contains the index template the
web stylesheet and javascript files:too.

That's why we created the module called Blog. Every single module will follow the same
pattern as we created before. This means that we're going to have dedicated routers and
controllers. Before we dive in‘we're going to create a BlogPost struct to represent our
articles. Make amnew Swift file under the Sources/App/Modules/Blog directory.

RIEE: Sources/AppiiViodules/Blog/BlogPost.swift
import' Foundation

struct BlogPost: Codable {
let, title: String
let slug: String
Let image: String
let excerpt: String
let date: Date
let category: String?
let content: String

Title is the title of the blog post: We're going to use the slug field to have a nice SEO-friendly
URL for the posts. I've prepared some images that you can grab from the source materials.
Place them under the Public/img/posts directory. The easiest way is to enter the commands
below into your AWS terminal. You can use the same commands on a Mac in a terminal
window.

SRC="raw.githubusercontent.com/tib/practical-server-side-swift/main/Assets"
DST="$HOME/myProject/Public/img/posts"
curl https://$SRC/01.jpg -o $DST/01.jpg
curl https://$SRC/02.jpg -o $DST/02.jpg
curl https://$SRC/03.jpg -o $DST/03.]jpg
curl https://$SRC/04.jpg —-o $DST/04.jpg
curl https://$SRC/05.jpg -o $DST/05.jpg
curl https://$SRC/06.jpg -o $DST/06.jpg
curl https://$SRC/07.jpg -o $DST/07.]jpg
curl https://$SRC/08.jpg -o $DST/08.]jpg
curl https://$SRC/09.jpg —-o $DST/09.jpg
curlt https://$SRC/10.jpg -o $DST/10.jpg

we store these blog posts? Well, for now, we enerate some random
data using the BlogFrontendController to simplify things. | ext chapter, we're going to
use an SQLite database, and later on, we're going to migr: o PostgreSQL storage.

We're going to create a few sample
indexes to BlogPost types. To uniq
standard dashed version of the title wi

s by simply using the stride method and map the
i ify every blog post with a slug, we just use a
i o contain the index value. We'll generate

random date values from th t 60 da the sample posts. There will be a total
random posts. Finally, ev: i ts ed by date, all of this happens inside of S
variable.

FILE: Sources/A g/Controllers/BlogFrontendController.swift
import Vapor
struct Blog ler {
: =A
: 1, to: 9, by: 1).map { index in

itle: "Sample post #\(index)",
slug: "sample-post-\(index)",

image: "/img/posts/\(String(format: 1)).jpg",

excerpt: "Lorem ipsum",

date: Date().addingTimeInterval(-Double. in: 0...(86400 * 60))),

category: Bool.random() ? "Sample catego nit,

content: "Lorem ipsum dolor sit amet."

)
}.sorted() { $0.date > $1.dat

}
The BlogFrontendControlleris respons handling all the blog-related routes that are
being publicly available o . That's why it's called a frontend controller. We'll use the
same logic later on to h of content channels, such as admin controllers and
API controllers.

Now for our blog e're going to need a new BlogPostsContext strUCVQV

: [BlogPost]

We should
under the BI

late called BlogPostsTemplate to the project. T o

tes/Html directory. we're going to iterate thr he'blo sts in
the available post data.

BlogPostsTemplate: TemplateRepresentable {
var context: BlogPostsContext

init(
_ context: BlogPostsContext
) A

self.context = context

@TagBuilder
func render(
_ req: Request
) —> Tag {
WebIndexTemp
Linit(tit xt.title)

(context.title)
context.message)

ss("lead")

Div {
for post in context.posts {
Article {
AA{
Img(src: post.image, a title)
H2(post.title)
P(post.excerpt)
+
chref(t/ st.slug)/")
}
}

.class("grid-221")
+
.id("blog")

.render(req)

}
| already
framework i e
resp

ism that the grid will use a 2 column layout on desktop a blet es and it'll
fe gle column on mobile devices. We have to tweak the ing

s for our posts when we display them in the list; we're goin e small

(¢ to our web.css file.

FILE: Public/css/web.css */

N4

#blog h2 {
margin:

}

Now p a request handler for this template inside trol on't remove
hin st add the func blogView at the end.
FIEE: Sources/App/Modules/Blog/Controllers/BlogFrontendContt@lfer.swi

i Vapor

struct BlogFrontendController {

var posts: [BlogPost] = {

stride(from: 1, to: 9, by: 1
BlogPost(

title: "Sample pos

p { index in

rmat: "%02d", index + 1)).jpg",

terval(-Double.random(in: 0...(86400 * 60))
? "Sample category" : nil,
olor sit amet."

return req.templates.renderHtml(
BlogPostsTemplate(ctx)
)

The request handler is very similar
that now we use an array of posts a
object for the blog module along with tl
register is going to be the list for th
saved as BlogRouter.s

that we made for the home template, except
context. We'll also have to create a router
oller. The only route that we're going to

g. This goes inside the blog module directory

FILE: Sources/A od /BlogRouter.swift

import Vapor

1lection {

As afinal s e egister this newly created BlogRouter inside th
can simply in object and put it into the routers array. Thi
both tel d the blog router and register all the necessary r

ry.publicDirectory ;

FILI ces/App/configure.swift

unc configure(
pp: Application
rows {

app.middleware.use(
FileMiddleware(
publicDirectory: app.dir

)

let routers: [RouteCollection] =
WebRouter(),

BlogRouter(),
for router in rou
try router.bad @ : app.routes)
}
}
Run the ap navigate to the /blog/ page, you should see osts.
° [0} localhost:8080/blog/ ¢ © M ©
& myPage - Blog.
[my! Home Blog About
(4}

Blog

Hot news and stories about everything.

a Qui Qui Provident Architecto Fugiat U

0ST ENTRY PAGES

N4

tion (SEO) friendly routing for the blog post detai . means
se a unique slug as the path of the URL to see th e for every
tart by creating a new BlogPostTemplate fileiin the lates folder.

rces/App/Modules/Blog/Templates/Html/BlogPostTemplat: ift

struct BlogPostTemplate: TemplateRepresentable {
var context: BlogPostContext

init(

_ context: BlogPostContext
) A

self.context = context

var dateFormatter: Da
let formatter =

formatter.da
formatter.ti
)

Hl(context.post.title)
P(context.post.excerpt)

)=> Tag
i i 1 context.post.title)
Div {
Section {
P(dateFormatter.string(from: co ate))

}
.class(["lead", "container"])

Img(src: context.pos age, alt: context.post.title)

Article {
Text(context.pos
}
.class("con r')
}
.id("post"

.render(req)

riable: since it's stored as a Date value, we can format p
representation with the help of a custom date form r. Th news
are Swift files, so it's really easy to share a global d rtouse
but this time a local variable will do just fine.

m the date output, the snippet above follows pretty much gic as we had
og template. The context that we used for it (Blol ont: contains a simple
variable.

FILE: Sources/App/Modules/Blog/Templates/Contexts/BlogPostContext.swi

N4

struct Blog {
let post:
¥
our ¢ oller, we have to find the first element that has a ma with the current
URL string. If there's no match, we can sim i browser to the home
cre ut if there's an article that has the given patl it using the view
. Add postView to the end of BlogFrontendCo

FILE: Sources/App/Modules/Blog/Controllers/BlogFrontendController.swift
import Vapor
struct BlogFrontendController {

var posts: [BlogPost] = {

stride(from: 1, to:
BlogPost(

H: .random() ? "Sample category" : nil,
"Lorem ipsum dolor sit amet."

0.date > $l.date }

est
s —> Response {
ctx = BlogPostsContext(

icon: "&",

title: "Blog",

message: "Hot news and stories about everythi
posts: posts

)

return req.templates.renderHt

BlogPostsTemplate(ctx)
)
+

func postView(
req: Request

h. Characters(

sts.first(where: { $0.slug == slug }) else {
ect(to: "/")

access the path of the URL via the req.url.path property. trim it first
sinc don't care about trailing and leading slashes; ne can r our blog posts to
there are any that match the given route.

e home page if there was no match using a fut [¢)
the post using the view renderer. Since the irect met also
it's safe to return with it.
ND PATH COMPONENTS Q
w the

This time
Otherwise,
returi

So, we were able to create our controller method; no uestion is: how do we
connect the handler to every single route that can have a sible matching path?

You need to know that you can catc
path component. There's also a .ca
is that anything (*) is just a single matc

the routes using a route handler and the .anything
e, the only difference between the two of them
component, but the catch-all (**) case will
ding other sub-paths such as /foo/bar/.

catch everything after the fir haracte

p
routes.get(.anything, use: controller.postVis

: RoutesBuilder
{ iii
es.get("blog", use: controller.blogView

Build and run the application using th mmand line or Xcode. In your browser window
click on one of the blog posts and efu ou should be able to read the full article.

N\
S
X

eoe < @ localhost:8080)ure-id-minima-qui-qui-provident/) th o
& myPage - lure Id Minima Qui Qui Provident
| ge Blog About
05/26/2021 - Uncategorized v
lure Id Minima

Provident

Natus voluptate ve tatem incidunt odio consequatur

ctive, this approach is nice because of th s. That's one of the
ctors during ranking. As a practice you ex ex template with
ional meta information; to support rich pre or, as an alternative, you can

e lead section and build a custom templ

CUSTOM MIDDLEWARES

rk with a / suffix and without a trailing slash
single URL using two versions of the same
this behavior, if needed, by hooking into the

Now if you enter the blog URL, notice
character. This means that wi n acces
path (e.g. /blog/ vs /blog). We han
"responder chain".

As | mentioned b X ewares can hook into requests and alter their behavior,

going to place ou lewares into a Middlewares folder under the App/.
Middlewar dy created, and add a new ExtendPathMiddlewar: it
with the foll
Ina pplication, a middleware should conform to the As

toc otocol uses the brand new async/await feature tha

)

lear to see that we should avoid that because it's way more

with res and promises. Let's just say for now that a fu
hing that you have to wait for; so for example, the next

AsyncResponder, and this is why we have to put the aw ord before the method

o \.'4

d more about async / await and concurrency on fic wift
I : iddlewares/ExtendPathMiddleware.swift
ort V
ndPathMiddleware: AsyncMiddleware {
c respond(

when we ¢
website.

to req: Request,
chainingTo next: AsyncResponder
) async throws —> Response {
if !req.url.path.hasSuffix("/") && !req.url.path.contains(".") {
return req.redirect(
to: req.url.path + "
redirectType: .per nt

+
return try await ne respond (
to: req

is usually the request handler that you register with
app or router instance.

.get, .post, etc. methods on the

Now that we defined a middleware, ill have to register it so it can be part of the chain.
We can do this in the configure.swift Si e middleware property on our application.

FILE: Sources/App/configul ift

import Vapor

public func confi
_ app: Applic
) throws {

for router in routers {
try router.boot(routes: app.routes)
+

app.middleware.use(ExtendPathMiddleware())
ters: [RouteCollection] = [
WebRouter(),
BlogRouter(),

In Vapor, it's relatively easy to alter the responder chain through middlewares. You can use
middleware formany things, and in this example, we were only scratehing the surface. You
need to'keep in mind that this little path extension middleware is only good for GET
requests. In a real-world server application, you might wantto check the request method
and perform additional checking if you want to use such a middieware.

What about the last menu item? Let's use that empty web.js file that we created at the
beginning of the tutorial. We're going to simply display an alert, but of course, you can use
this template to spice up the website with some fancy animations.

/* FILE: Public/js/web.js *x/

function about() {
alert("myPage\n\nversion<10.0");

That's the about menu, nothing serious for now, but | hope that this examplé gives you a
basic idea about how to import and use javascript files. You can use jQuery or anything,else
to make yourlife better, but in this book, we're only going to write Vanilla JavaScript.

SUMMARY

This chapter was all about getting started with Vapor'andithe view templates. SwiftHtml is
real easy to start with: the most difficult part is when you have to create the connection
between the library and Vapor. Using a DSL to write type-safe HTML code is nice since the
compiler can catch your errors at build time and you'll make fewer mistakes. We've seen how
you can create modules to separate individual components in your application. Modules are
really powerful code organization tools; using standalone Routers and Controllers helps us
to maintain clean code everywhere. We've alsodlearned about the fundamentals of routing
and played around a little bit with an asyncmiddleware. In the next chapter, we'll focus on
persisting blog entries into a local SQLite database using Fluent.

