

SERVER
SIDE
SWIFT

BY TIBOR BÖDECS

PRACTICAL

THIRD EDITION

PRACTICAL

SERVER
SIDE
SWIFT
BY TIBOR BÖDECS

THIRD EDITION
VERSION 1.5.0
PUBLISHED BY TIBOR BÖDECS
3RD OF APRIL 2023

CHAPTER 3:
GETTING STARTED WITH SWIFTHTML

In this chapter we're going to build our first website using the SwiftHtml library. We're going
to generate HTML code through Swift by creating template files using a Domain Specific
Language (DSL). You'll learn about how to connect SwiftHtml with Vapor and how to render
HTML by using context variables to provide additional template data. You'll learn about the
syntax of SwiftHtml, how to iterate through objects, how to check optional variables, and
how to extend a base template and provide a reusable framework for our website. We'll
build a simple blog layout with a post list and detail pages.

RENDERING TEMPLATES USING SWIFTHTML
The SwiftHtml library has multiple library products. The core library is called SwiftSgml,
which is an abstract interface for the other SGML-based libraries. The SwiftHtml product
contains most of the necessary HTML tags, the SwiftSvg library can help you to dynamically
build SVG tags, the SwiftSitemap product can generate a sitemap.xml file and SwiftRss
dependency can help you with proper RSS feed generation.

You can use SwiftHtml to generate dynamic HTML pages for a front-end website. Using a
DSL-based approach has its benefits: first of all, you don't have to write HTML code by hand,
but you can use Swift and take advantage of the compiler to catch errors. Separating the
template layer and using a DSL is always a good thing, and you can reuse the template files
and keep away the view layer from the rest of your business logic.

Using SwiftHtml is relatively simple. If you're familiar with the HTML standard it's going to be
very straightforward to work with this small utility library. SwiftHtml tries to follow the
standards as much as possible, so hopefully, it's going to feel quite natural to build your
templates. It also gives you type safety, so you won't be able to misspell a tag or misplace a
closing tag.

Let's continue with the Vapor toolbox-based example and alter the contents of the package.
We need to add the SwiftHtml package as a dependency to our Package.swift file.

/// FILE: Package.swift

// swift-tools-version:5.7
import PackageDescription

let package = Package(
 name: "myProject",
 platforms: [
 .macOS(.v12)
],
 dependencies: [
 .package(
 url: "https://github.com/vapor/vapor",
 from: "4.70.0"

),
 .package(
 url: "https://github.com/binarybirds/swift-html",
 from: "1.7.0"
),
],
 targets: [
 .target(name: "App", dependencies: [
 .product(name: "Vapor", package: "vapor"),
 .product(name: "SwiftHtml", package: "swift-html"),
 .product(name: "SwiftSvg", package: "swift-html"),
]),
 .executableTarget(name: "Run", dependencies: ["App"]),
 .testTarget(name: "AppTests", dependencies: [
 .target(name: "App"),
 .product(name: "XCTVapor", package: "vapor"),
])
]
)

Now you should run the swift package update command again, or wait until Xcode fetches
the new package dependencies. When the process is completed, we should be ready to
render HTML files with just a few simple lines in the routes.swift file:

/// FILE: Sources/App/routes.swift

import Vapor
import SwiftHtml

func routes(_ app: Application) throws {
 app.get { req async in
 "It works!"
 }

 app.routes.get("hello") { req -> Response in
 let doc = Document(.html) {
 Html {
 Head {
 Title("Hello, World!")
 }
 Body {
 H1("Hello, World!")
 }
 }
 }
 let body = DocumentRenderer(
 minify: false,
 indent: 4
)
 .render(doc)
 return Response(
 status: .ok,
 headers: [
 "Content-Type": "text/html; charset=utf-8"
],
 body: .init(string: body)
)
 }
}

Alter the configuration file by enabling the FileMiddleware, so Vapor can serve public files
from a directory, please note that you might have to create this directory later on.

/// FILE: Sources/App/configure.swift

import Vapor

public func configure(_ app: Application) throws {

 app.middleware.use(
 FileMiddleware(
 publicDirectory: app.directory.publicDirectory
)
)

 try routes(app)
}

If you don't have a Public directory under your project folder, please create one, since we're
going to place our assets there later on. This is also a good time to create other folders we'll
use during this chapter. We're going to create two modules inside the App directory.

Note: A Module is a common interface that can boot a collection of components required to
implement a particular function of the application. For example, in a CRUDS module, there's
a page to show the starting index of existing records (S), then one to create a new record \
(C), one to update an existing record (U), and one to save the updated record... well, you get
the idea. All the code for a given functionality would usually be together in one module. I'm
not saying that it would be in one file: on the contrary, I'm saying that the sub-directories
and Swift files comprising the functionality would be under one directory. The examples here
are Sources/App/Modules/Blog and Sources/App/Modules/Web. (See the tree structure
below.)

Use the commands:

cd ~/myProject
mkdir -p Public
mkdir -p Public/css
mkdir -p Public/img
mkdir -p Public/img/posts
mkdir -p Public/js
mkdir -p Resources
mkdir -p Sources/App/Controllers
mkdir -p Sources/App/Template
mkdir -p Sources/App/Models
mkdir -p Sources/App/Modules
mkdir -p Sources/App/Modules/Web
mkdir -p Sources/App/Modules/Web/Controllers
mkdir -p Sources/App/Modules/Web/Templates
mkdir -p Sources/App/Modules/Web/Templates/Html
mkdir -p Sources/App/Modules/Web/Templates/Contexts
mkdir -p Sources/App/Modules/Blog
mkdir -p Sources/App/Modules/Blog/Controllers
mkdir -p Sources/App/Modules/Blog/Templates
mkdir -p Sources/App/Modules/Blog/Templates/Contexts
mkdir -p Sources/App/Modules/Blog/Templates/Html
mkdir -p Sources/App/Middlewares

Your directory structure should look like this now:

.
!"" Dockerfile
!"" Package.resolved
!"" Package.swift
!"" Public
!"" css
!"" img
$"" posts

$"" js
!"" Resources
!"" Sources
!"" App
!"" Controllers
!"" Middlewares
!"" Migrations
!"" Models
!"" Modules
!"" Blog
!"" Controllers
$"" Templates
!"" Contexts
$"" Html
$"" Web
!"" Controllers
$"" Templates
!"" Contexts
$"" Html
!"" Template
!"" configure.swift
$"" routes.swift
$"" Run
$"" main.swift
!"" Tests
$"" AppTests
$"" AppTests.swift
$"" docker-compose.yml

A middleware is a function that will be executed every time before the request handler. So in
our case, if the browser asks for a file such as a stylesheet, a script, or an image, the
FileMiddleware can look it up in the public directory. If the file exists, the content will be
returned as a response. This is great for serving static assets, but please note that
everything inside the configured directory will be publicly available through the server, so
don't place sensitive data there.

In the next part of this example, we're simply using a request handler block and the built-in
DocumentRenderer from SwiftHtml to return a Response with the necessary headers. A
response object is something that represents an HTTP response. It has a status code, some
header information, and maybe a body. In our case, we simply set the proper content-type
header for our HTML string output, and we can use a 200 status code to indicate that the
response was OK. The DocumentRenderer simply turns our HTML DSL structure into plain
text; you can also minify your output, or set the indent size if you want.

Although Vapor has an abstract view layer that we could use to render our template files, we
want to have a bit more type safety, so we're going to create our own template renderer.
First of all, we're going to need a reusable template protocol:

/// FILE: Sources/App/Template/TemplateRepresentable.swift

import Vapor
import SwiftSgml

public protocol TemplateRepresentable {

 @TagBuilder
 func render(_ req: Request) -> Tag
}

This interface has only one method that can return a Tag object; the method itself is called
render and it'll receive the current Request object so we'll be able to access it inside our
template files. The next step is to create the actual renderer, which is going to be very similar
to the method that we've already had in our configuration file.

/// FILE: Sources/App/Template/TemplateRenderer.swift

import Vapor
import SwiftHtml

public struct TemplateRenderer {

 var req: Request

 init(_ req: Request) {
 self.req = req
 }

 public func renderHtml(
 _ template: TemplateRepresentable,
 minify: Bool = false,
 indent: Int = 4
) -> Response {
 let doc = Document(.html) {
 template.render(req)
 }
 let body = DocumentRenderer(
 minify: minify,
 indent: indent
)
 .render(doc)
 return Response(
 status: .ok,
 headers: [
 "Content-Type": "text/html; charset=utf-8"
],
 body: .init(string: body)
)
 }
}

The TemplateRenderer can render an HTML template, which is a TemplateRepresentable
object, and we're also going to be able to set additional minification and indentation options
when calling the renderHtml method. This method returns with a Response object and it's
using the same principles as we've seen before. The TemplateRenderer has an internal init
method: we won't create this struct here, but instead, we're going to extend the Request
object to get an instance of the renderer.

/// FILE: Sources/App/Template/Request+Template.swift

import Vapor

public extension Request {
 var templates: TemplateRenderer { .init(self) }
}

Now if we go back to our router file, we can create a new template and render it using the
req.templates extension.

/// FILE: Sources/App/routes.swift

import Vapor
import SwiftHtml

struct MyTemplate: TemplateRepresentable {
 let title: String

 func render(_ req: Request) -> Tag {
 Html {
 Head {
 Title(title)
 }
 Body {
 H1(title)
 }
 }
 }
}

func routes(_ app: Application) throws {
 app.get { req async in
 "It works!"
 }

 app.routes.get("hello") { req -> Response in
 req.templates.renderHtml(
 MyTemplate(title: "Hello, World!")
)
 }
}

As you can see, the MyTemplate struct conforms to the TemplateRepresentable protocol;
we've also introduced a new contextual variable called title. We can pass this context to our
template when we initialize it, and we can access the title in the render method. The request
object is also available in the render method, but at this time, we won't use it.

Finally we can call the req.templates.renderHtml method using our template instance to
return an HTML response.

TEMPLATES AND CONTEXTS
So far, we're good with the template renderer, so now let's tackle one other issue by creating
a reusable index template that's going to be the base of every web page that we're going to
render later on. Since we're going to use a modular approach to build everything, this is why
we created the Modules folder with a Web module inside of it.

We're going to place all of our templates inside the Templates/Html directory; every
template will have an associated context object, and we're going to store those inside a
Templates/Contexts directory.

/// FILE: Sources/App/Modules/Web/Templates/Html/WebIndexTemplate.swift

import Vapor
import SwiftHtml

public struct WebIndexTemplate: TemplateRepresentable {

 public var context: WebIndexContext

 public init(_ context: WebIndexContext) {
 self.context = context
 }

 @TagBuilder
 public func render(_ req: Request) -> Tag {
 Html {
 Head {
 Meta()
 .charset("utf-8")
 Meta()
 .name(.viewport)
 .content("width=device-width, initial-scale=1")

 Link(rel: .shortcutIcon)
 .href("/img/favicon.ico")
 .type("image/x-icon")
 Link(rel: .stylesheet)
 .href("https://cdn.jsdelivr.net/gh/feathercms/feather-core@1.0.0-
beta.44/feather.min.css")
 Link(rel: .stylesheet)
 .href("/css/web.css")

 Title(context.title)
 }
 Body {
 Main {
 Section {
 H1(context.message)
 }
 .class("wrapper")
 }
 }
 }
 .lang("en-US")
 }
}

This file is our index HTML template. If you're familiar with SwiftUI, you should notice that the
render method uses a result builder to create the necessary structure. The syntax itself is
very simple: every single HTML tag is available as a Tag subclass, so the naming convention
is the same. You can add attributes through modifiers and the entire tree will be rendered
using the DocumentRenderer that we've introduced a bit earlier.

Before we move forward, we should talk a bit about CSS. If you don't know much about
HTML & CSS, you should take a look at this HTML Tutorial. This book will focus more on
Swift, but since the templates will contain lots of HTML code you should have some basic
understanding of the fundamentals of frontend development, including both the Hypertext
Markup Language and Cascading Style Sheets.

We're going to use an external stylesheet through a Content Delivery Network (CDN) system.
A CDN allows us to load external resources much faster. The external Feather CSS file is part
of a CMS system, that contains some basic components that we can use to style our
document. If you take a look at our website with this extra stylesheet imported, you should
see that it works nice both in light and dark mode. If you want to know more about the
underlying components, please take a look at the docs.

After the external CSS, we're also going to add one more extra line to a local CSS file
reference. We're going to place our local style overrides into the Public/css/web.css file. In
the Public/css folder, create a web.css file. A CSS is a stylesheet that describes the visual
style of an HTML document. You can learn more about this format using the W3Schools

website. Our web.css file will be quite empty for now, since the external stylesheet gives us
pretty much everything we need to display a nice-looking, but still really basic website.

touch Public/css/web.css

We're also going to define the context object to use its properties as variables inside our
template file. The context that's used for this template is called WebIndexContext and it's a
relatively simple struct.

/// FILE: Sources/App/Modules/Web/Templates/Contexts/WebIndexContext.swift

public struct WebIndexContext {

 public let title: String
 public let message: String

 public init(
 title: String,
 message: String
) {
 self.title = title
 self.message = message
 }
}

The final step is to alter our routes a little bit and return the rendered template as an HTML
response. You can render a template by using the req.templates.renderHtml method; we
just have to initialize our template with a given context.

// FILE: Sources/App/routes.swift

import Vapor
import SwiftHtml

func routes(_ app: Application) throws {

 app.routes.get { req -> Response in
 req.templates.renderHtml(
 WebIndexTemplate(
 WebIndexContext(
 title: "Home",
 message: "Hi there, welcome to my page!"
)
)
)
 }
}

We can say that a template context is a type-safe data representation of everything that we
need to render our template file. Of course, the request object is also available inside the
render method and we can use it to get dynamic path components or the currently logged-in
user, but let's talk about these kinds of things later on.

Remember, the render method will convert your template file into an HTML string and set
some extra headers. The Content-Type will be set to text/html, so your browser can render
the page as an HTML website. Run the app using the command line or Xcode; but if you're
using Xcode, definitely don't forget to set a custom working directory or the server won't
find your templates and public files. Check the previous chapter if you don't know how to set
up a custom working directory.

If your project isn't on your local machine, test the app using curl. The ampersand at the end
of the Swift command will run the compile in the background so that you can use curl in the
foreground.

swift run &
curl localhost:8080

The response you expect is:

<!DOCTYPE html>
<html lang="en-US">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="shortcut icon" href="/img/favicon.ico" type="image/x-icon">
 <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/feathercms/feather-
core@1.0.0-beta.44/feather.min.css">
 <link rel="stylesheet" href="/css/web.css">
 <title>Home</title>
 </head>
 <body>
 <main>
 <section class="wrapper">
 <h1>Hi there, welcome to my page!</h1>
 </section>
 </main>
 </body>
</html>

To stop the project, bring the job to the foreground, the use CTRL+C.

$ fg %1
press CTRL+C to stop the process

TEMPLATE HIERARCHY
Splitting up templates is going to be essential if you're planning to build a multi-page
website. We can create reusable parts that you can share and render them later on inside
other template files. In the following example, we're going to create three separate pages.
First, we have to update the index template, since that's going to be reused for the entire
website.

/// FILE: Sources/App/Modules/Web/Templates/Html/WebIndexTemplate.swift

import Vapor
import SwiftHtml
import SwiftSvg

extension Svg {

 static func menuIcon() -> Svg {
 Svg {
 Line(x1: 3, y1: 12, x2: 21, y2: 12)
 Line(x1: 3, y1: 6, x2: 21, y2: 6)
 Line(x1: 3, y1: 18, x2: 21, y2: 18)
 }
 .width(24)
 .height(24)

 .viewBox(minX: 0, minY: 0, width: 24, height: 24)
 .fill("none")
 .stroke("currentColor")
 .strokeWidth(2)
 .strokeLinecap("round")
 .strokeLinejoin("round")
 }
}

public struct WebIndexTemplate: TemplateRepresentable {

 public var context: WebIndexContext
 var body: Tag

 public init(
 _ context: WebIndexContext,
 @TagBuilder _ builder: () -> Tag
) {
 self.context = context
 self.body = builder()
 }

 @TagBuilder
 public func render(
 _ req: Request
) -> Tag {
 Html {
 Head {
 Meta()
 .charset("utf-8")
 Meta()
 .name(.viewport)
 .content("width=device-width, initial-scale=1")

 Link(rel: .shortcutIcon)
 .href("/img/favicon.ico")
 .type("image/x-icon")
 Link(rel: .stylesheet)
 .href("https://cdn.jsdelivr.net/gh/feathercms/feather-core@1.0.0-
beta.44/feather.min.css")
 Link(rel: .stylesheet)
 .href("/css/web.css")

 Title(context.title)
 }
 Body {
 Header {
 Div {
 A {
 Img(src: "/img/logo.png", alt: "Logo")
 }
 .id("site-logo")
 .href("/")

 Nav {
 Input()
 .type(.checkbox)
 .id("primary-menu-button")
 .name("menu-button")
 .class("menu-button")
 Label {
 Svg.menuIcon()
 }
 .for("primary-menu-button")
 Div {
 A("Home")
 .href("/")
 .class("selected", req.url.path == "/")
 A("Blog")
 .href("/blog/")
 .class("selected", req.url.path == "/blog/")
 A("About")
 .href("#")
 .onClick("javascript:about();")

 }
 .class("menu-items")
 }
 .id("primary-menu")
 }
 .id("navigation")
 }

 Main {
 body
 }

 Footer {
 Section {
 P {
 Text("This site is powered by ")
 A("Swift")
 .href("https://swift.org")
 .target(.blank)
 Text(" & ")
 A("Vapor")
 .href("https://vapor.codes")
 .target(.blank)
 Text(".")
 }
 P("myPage © 2020-2022")
 }
 }

 Script()
 .type(.javascript)
 .src("/js/web.js")

 }
 }
 .lang("en-US")
 }
}

One major change: here's the new builder parameter that you can pass for the template file.
It's marked with the @TagBuilder result builder, so this means that you can build an
additional HTML structure when calling the init method, and the final tag of that result will be
used inside the main section of the index template. It's not that complicated when you see it
in use; you can simply create a new custom body tag for your index template through this
builder attribute.

The template structure itself is similar to our previous version, but we've added a new
header section with a logo, plus some navigation links that'll help us to transition between
the sub-pages. We're using the SwiftSvg library from the SwiftHtml package to render an
inline SVG to represent our navigation menu icon. It's a standard hamburger menu element.

The good news is that you can create even smaller chunks as functions, so for example the
entire navigation can be a standalone template file or just a new method inside the index
template. Just play around with this a bit and try to make it fit your needs.

In our case, this index template will be reused across multiple pages, so we don't have to
copy and paste all the generic Swift HTML code that would be the same everywhere. We're
going to fill the body placeholder with some actual tag defined in other templates, plus
replace the title variable using the context. Please make sure that you remove the message
variable from the WebIndexContext struct since we don't need that anymore.

/// FILE: Sources/App/Modules/Web/Templates/Contexts/WebIndexContext.swift

public struct WebIndexContext {

 public let title: String

 public init(
 title: String
) {
 self.title = title
 }
}

We have to move the message in the routes.swift file into the tag builder.

/// FILE: Sources/App/routes.swift

import Vapor
import SwiftHtml

func routes(_ app: Application) throws {

 app.routes.get { req -> Response in
 req.templates.renderHtml(
 WebIndexTemplate(
 WebIndexContext(
 title: "Home"
)
) {
 P("Hi there, welcome to my page!")
 }
)
 }
}

We're going to download the site logo and the favicon from the GitHub repository using the
following snippet:

SRC="raw.githubusercontent.com/tib/practical-server-side-swift/main/Assets"
DST="$HOME/myProject/Public/img/"
curl https://$SRC/favicon.ico -o $DST/favicon.ico
curl https://$SRC/logo.png -o $DST/logo.png

As the last component of our index template, we're going to embed some basic javascript
files from the Public/js directory. Please create an empty web.js file; no worries, we'll use
this real soon.

touch Public/js/web.js

Now you should try to run the application.

THE HOME PAGE TEMPLATE
The home page will be really simple, but first, we're going to create a new
WebHomeContext struct to represent the data that we'd like to render later on inside our
home template.

/// FILE: Sources/App/Modules/Web/Templates/Contexts/WebHomeContext.swift

struct WebHomeContext {
 let title: String
 let message: String
}

Now we can define our WebHomeTemplate file. The tricky part is that we're going to render
a WebIndexTemplate with a custom body tag and we're going to feed the index template's
context with the title from the home template context.

/// FILE: Sources/App/Modules/Web/Templates/Html/WebHomeTemplate.swift

import Vapor
import SwiftHtml

struct WebHomeTemplate: TemplateRepresentable {

 var context: WebHomeContext

 init(
 _ context: WebHomeContext
) {
 self.context = context
 }

 @TagBuilder
 func render(
 _ req: Request
) -> Tag {
 WebIndexTemplate(
 .init(
 title: context.title
)
) {
 Div {
 Section {
 H1(context.title)
 P(context.message)
 }
 .class("lead")
 }
 .id("home")
 .class("container")
 }
 .render(req)
 }
}

It's time to render the entire page. We don't have to set a body parameter anymore using the
context variable in the request handler since it's already defined in the home template. This
is a major difference between variables and evaluated blocks. We can say in general that
variables are usually coming from Swift, and blocks will be defined using templates.

It's possible to create a chain of templates, so for example index ▸ page ▸ welcome. Multi-
level templates are fine, if you follow the same pattern from above you can create a nice
hierarchy for your views, but you can also go the other way around. So for example, you can
create a LeadTemplate with a title and message context, and render that template inside of a
<div> instead of manually placing the same code there again and again. Try to experiment
with this now, but later on, I'll show you examples.

MODULE CONTROLLERS
What makes a module? I already mentioned that a Vapor app can have models, controllers,
migration scripts, and many more. A module is something that holds together these
components plus our template and context files. Our very first module is called Web
because it's responsible for rendering the main pages of our website.

Until now, we've placed everything inside the configure or routes files, but that's not a very
good approach to separate things. We'll move the entire template render logic from these
files by using a dedicated WebFrontendController object. You can put this controller into a
file with the same name, under a Controllers directory inside the Web module. Usually, most
of the structs and classes have their own dedicated Swift files, you should follow this
convention later on too.

Instead of using request handler completion blocks, you can also create a function that has
the same signature as the block had, and we can connect this method to the route as a
pointer to handle incoming requests. First, this is our new controller.

/// FILE: Sources/App/Modules/Web/Controllers/WebFrontendController.swift

import Vapor

struct WebFrontendController {

 func homeView(
 req: Request
) throws -> Response {
 req.templates.renderHtml(
 WebHomeTemplate(
 .init(
 title: "Home",
 message: "Hi there, welcome to my page."
)
)
)
 }
}

The next thing that we should do is to make the connection between the router and the
controller. We're not going to simply put everything into the routes or the config file; instead,
we'll have a standalone Router. If you have lots of routes it's a good idea to split them up
into collections by using the RouteCollection protocol. This protocol has a boot function that
you have to implement and register the routes using the routes object instead of the app.

You can use the same get method on the routes object just like we did before. There are
helper functions defined on the RoutesBuilder that are available for all the HTTP methods
(get, post, put, delete, etc.). You can also group routes by path components or middleware. A
route group can be used to connect endpoints under the same namespace with similar
functions.

You could also enter a specific path component as the first parameter, but in our case, we'll
simply connect our homeView method from the WebFrontendController to the main
endpoint.

/// FILE: Sources/App/Modules/Web/WebRouter.swift

import Vapor

struct WebRouter: RouteCollection {

 let frontendController = WebFrontendController()

 func boot(
 routes: RoutesBuilder
) throws {
 routes.get(use: frontendController.homeView)
 }
}

Now we have to boot the router inside the configuration method. This is a nice approach
since you can have multiple routers and register as many as you want. The boot method
needs a route builder, so we can pass the app.routes property, and that'll just work fine.

/// FILE: Sources/App/configure.swift

import Vapor

public func configure(
 _ app: Application
) throws {

 app.middleware.use(
 FileMiddleware(
 publicDirectory: app.directory.publicDirectory
)
)

 let router = WebRouter()
 try router.boot(routes: app.routes)
}

You don't need the routes.swift file anymore because it was replaced by WebRouter.swift.
Delete it like this:

rm Sources/App/routes.swift

Run the application and you should see a nice little home page rendered by using the two
template files combined. Don't go to the blog page yet: we're going to do that one next.

RENDERING SUB-TEMPLATES
I mentioned that you can render a template inside a template, so let me show you an
example of how to do that. We're going to use quite a lot of links later on, so it makes sense
to create a WebLinkContext object with a label and URL property.

/// FILE: Sources/App/Modules/Web/Templates/Contexts/WebLinkContext.swift

public struct WebLinkContext {

 public let label: String
 public let url: String

 public init(
 label: String,

 url: String
) {
 self.label = label
 self.url = url
 }
}

With a corresponding WebLinkTemplate, we can render our WebLinkContext objects; of
course, we could add more properties, such as style classes or a boolean value to determine
if the link is a blank link or not, but for the sake of simplicity let's just start with a label & URL.
It's a good experiment for you if you'd like to add more options.
/// FILE: Sources/App/Modules/Web/Templates/Html/WebLinkTemplate.swift

import Vapor
import SwiftHtml

struct WebLinkTemplate: TemplateRepresentable {

 var context: WebLinkContext

 init(
 _ context: WebLinkContext
) {
 self.context = context
 }

 @TagBuilder
 func render(
 _ req: Request
) -> Tag {
 A(context.label)
 .href(context.url)
 }
}

We should also alter the WebHomeContext struct, so we can take advantage of the newly
created link context. We're also going to drop in a new icon property to make our home
page just a bit prettier.

/// FILE: Sources/App/Modules/Web/Templates/Contexts/WebHomeContext.swift

struct WebHomeContext {
 let icon: String
 let title: String
 let message: String
 let paragraphs: [String]
 let link: WebLinkContext
}

We have to upgrade our home page template to represent the changes that we made
earlier.

/// FILE: Sources/App/Modules/Web/Templates/Html/WebHomeTemplate.swift

import Vapor
import SwiftHtml

struct WebHomeTemplate: TemplateRepresentable {

 var context: WebHomeContext

 init(

 _ context: WebHomeContext
) {
 self.context = context
 }

 @TagBuilder
 func render(
 _ req: Request
) -> Tag {
 WebIndexTemplate(
 .init(title: context.title)
) {
 Div {
 Section {
 P(context.icon)
 H1(context.title)
 P(context.message)
 }
 .class("lead")

 for paragraph in context.paragraphs {
 P(paragraph)
 }

 WebLinkTemplate(context.link).render(req)
 }
 .id("home")
 .class("container")
 }
 .render(req)
 }
}

As you can see, we can use the WebLinkTemplate with the link context (that's part of the
home context) and use the render method on the template to return a tag. The returned Tag
object is just like any other tag that we can create by hand, so it's safe to embed one
template inside of another.

Please note that we can still use a regular for loop (also it's possible to use if-else) inside the
template file. This is great because we can iterate through paragraph values and render
them by using the P tag.

/// FILE: Sources/App/Modules/Frontend/Controllers/FrontendController.swift

import Vapor

struct WebFrontendController {

 func homeView(req: Request) throws -> Response {
 let ctx = WebHomeContext(
 icon: "! ",
 title: "Home",
 message: "Hi there, welcome to my page.",
 paragraphs: [
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit.",
 "Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.",
 "Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.",
 "Nisi ut aliquip ex ea commodo consequat.",
],
 link: .init(
 label: "Read my blog →",
 url: "/blog/"
)
)

 return req.templates.renderHtml(
 WebHomeTemplate(ctx)

)
 }
}

Finally, we have to modify the frontend controller, and of course, we can use some lorem
ipsum text to display some random text inside the body. As you can see, using template
hierarchies is quite simple with SwiftHtml, since you can use a @TagBuilder to provide
additional content for a template, or you can simply render a template inside another.

THE BLOG LIST
Since we're building an app using a modular architecture, we can't simply put blog-related
stuff into the Web module. The web module is somewhat special in our case since it
provides us with the main elements to render our website. It contains the index template the
web stylesheet and javascript files too.

That's why we created the module called Blog. Every single module will follow the same
pattern as we created before. This means that we're going to have dedicated routers and
controllers. Before we dive in we're going to create a BlogPost struct to represent our
articles. Make a new Swift file under the Sources/App/Modules/Blog directory.

/// FILE: Sources/App/Modules/Blog/BlogPost.swift

import Foundation

struct BlogPost: Codable {
 let title: String
 let slug: String
 let image: String
 let excerpt: String
 let date: Date
 let category: String?
 let content: String
}

Title is the title of the blog post. We're going to use the slug field to have a nice SEO-friendly
URL for the posts. I've prepared some images that you can grab from the source materials.
Place them under the Public/img/posts directory. The easiest way is to enter the commands
below into your AWS terminal. You can use the same commands on a Mac in a terminal
window.

SRC="raw.githubusercontent.com/tib/practical-server-side-swift/main/Assets"
DST="$HOME/myProject/Public/img/posts"
curl https://$SRC/01.jpg -o $DST/01.jpg
curl https://$SRC/02.jpg -o $DST/02.jpg
curl https://$SRC/03.jpg -o $DST/03.jpg
curl https://$SRC/04.jpg -o $DST/04.jpg
curl https://$SRC/05.jpg -o $DST/05.jpg
curl https://$SRC/06.jpg -o $DST/06.jpg
curl https://$SRC/07.jpg -o $DST/07.jpg
curl https://$SRC/08.jpg -o $DST/08.jpg
curl https://$SRC/09.jpg -o $DST/09.jpg
curl https://$SRC/10.jpg -o $DST/10.jpg

We're going to store the name of these under the image field. Excerpt is going to be
displayed on the list, and post date is the publish date of a given post. Category is an
optional string that we're going to use as a category to group posts together. Content is
going to be displayed on the post detail pages.

How do we store these blog posts? Well, for now, we're going to generate some random
data using the BlogFrontendController to simplify things. In the next chapter, we're going to
use an SQLite database, and later on, we're going to migrate to PostgreSQL storage.

We're going to create a few sample posts by simply using the stride method and map the
indexes to BlogPost types. To uniquely identify every blog post with a slug, we just use a
standard dashed version of the title which will also contain the index value. We'll generate
random date values from the past 60 days for the sample posts. There will be a total of 9
random posts. Finally, everything gets sorted by date, all of this happens inside of a posts
variable.

/// FILE: Sources/App/Modules/Blog/Controllers/BlogFrontendController.swift

import Vapor

struct BlogFrontendController {

 var posts: [BlogPost] = {
 stride(from: 1, to: 9, by: 1).map { index in
 BlogPost(
 title: "Sample post #\(index)",
 slug: "sample-post-\(index)",
 image: "/img/posts/\(String(format: "%02d", index + 1)).jpg",
 excerpt: "Lorem ipsum",
 date: Date().addingTimeInterval(-Double.random(in: 0...(86400 * 60))),
 category: Bool.random() ? "Sample category" : nil,
 content: "Lorem ipsum dolor sit amet."
)
 }.sorted() { $0.date > $1.date }
 }()
}

The BlogFrontendController is responsible for handling all the blog-related routes that are
being publicly available on the web. That's why it's called a frontend controller. We'll use the
same logic later on to create other types of content channels, such as admin controllers and
API controllers.

Now for our blog posts page, we're going to need a new BlogPostsContext struct that we
can use to render a page.

/// FILE: Sources/App/Modules/Blog/Templates/Contexts/BlogPostsContext.swift

struct BlogPostsContext {
 let icon: String
 let title: String
 let message: String
 let posts: [BlogPost]
}

We should add a new template called BlogPostsTemplate to the project. This file goes
under the Blog/Templates/Html directory. we're going to iterate through the blog posts in
this view and render the available post data.

/// FILE: Sources/App/Modules/Blog/Templates/Html/BlogPostsTemplate.swift

import Vapor
import SwiftHtml

struct BlogPostsTemplate: TemplateRepresentable {

 var context: BlogPostsContext

 init(
 _ context: BlogPostsContext
) {
 self.context = context
 }

 @TagBuilder
 func render(
 _ req: Request
) -> Tag {
 WebIndexTemplate(
 .init(title: context.title)
) {
 Div {
 Section {
 P(context.icon)
 H1(context.title)
 P(context.message)
 }
 .class("lead")

 Div {
 for post in context.posts {
 Article {
 A {
 Img(src: post.image, alt: post.title)
 H2(post.title)
 P(post.excerpt)
 }
 .href("/\(post.slug)/")
 }
 }
 }
 .class("grid-221")
 }
 .id("blog")
 }
 .render(req)
 }
}

I already mentioned this, but the nice thing about using the third-party Feather CSS
framework is that we get most of the components out of the box. For example, our list will be
responsive, because we're using the grid-221 class.

This means that the grid will use a 2 column layout on desktop and tablet devices and it'll
feature a single column on mobile devices. We have to tweak the standard heading
elements for our posts when we display them in the list; we're going to add one small
change to our web.css file.

/* FILE: Public/css/web.css */

#blog h2 {
 margin: 0.5rem 0;
}

Now we can set up a request handler for this template inside the controller. Don't remove
anything; just add the func blogView at the end.

/// FILE: Sources/App/Modules/Blog/Controllers/BlogFrontendController.swift

import Vapor

struct BlogFrontendController {

 var posts: [BlogPost] = {
 stride(from: 1, to: 9, by: 1).map { index in
 BlogPost(
 title: "Sample post #\(index)",
 slug: "sample-post-\(index)",
 image: "/img/posts/\(String(format: "%02d", index + 1)).jpg",
 excerpt: "Lorem ipsum",
 date: Date().addingTimeInterval(-Double.random(in: 0...(86400 * 60))),
 category: Bool.random() ? "Sample category" : nil,
 content: "Lorem ipsum dolor sit amet."
)
 }.sorted() { $0.date > $1.date }
 }()

 func blogView(
 req: Request
) throws -> Response {
 let ctx = BlogPostsContext(
 icon: "" ",
 title: "Blog",
 message: "Hot news and stories about everything.",
 posts: posts
)
 return req.templates.renderHtml(
 BlogPostsTemplate(ctx)
)
 }
}

The request handler is very similar to the one that we made for the home template, except
that now we use an array of posts as part of the context. We'll also have to create a router
object for the blog module along with the controller. The only route that we're going to
register is going to be the list view for the blog. This goes inside the blog module directory
saved as BlogRouter.swift.

/// FILE: Sources/App/Modules/Blog/BlogRouter.swift

import Vapor

struct BlogRouter: RouteCollection {

 let controller = BlogFrontendController()

 func boot(
 routes: RoutesBuilder
) throws {
 routes.get("blog", use: controller.blogView)
 }
}

As a final step, we have to register this newly created BlogRouter inside the config file. We
can simply initiate a new object and put it into the routers array. This way Vapor can boot
both the frontend and the blog router and register all the necessary route handlers.

/// FILE: Sources/App/configure.swift

import Vapor

public func configure(
 _ app: Application
) throws {

 app.middleware.use(
 FileMiddleware(
 publicDirectory: app.directory.publicDirectory
)
)

 let routers: [RouteCollection] = [
 WebRouter(),
 BlogRouter(),
]
 for router in routers {
 try router.boot(routes: app.routes)
 }
}

Run the application and navigate to the /blog/ page, you should see the list of posts.

THE POST ENTRY PAGES

The very last thing in this chapter that we're going to accomplish is that we implement a
search engine optimization (SEO) friendly routing for the blog post detail pages. This means
that we're going to use a unique slug as the path of the URL to see the detail page for every
single article. We'll start by creating a new BlogPostTemplate file in the Templates folder.

/// FILE: Sources/App/Modules/Blog/Templates/Html/BlogPostTemplate.swift

import Vapor
import SwiftHtml

struct BlogPostTemplate: TemplateRepresentable {

 var context: BlogPostContext

 init(
 _ context: BlogPostContext
) {
 self.context = context
 }

 var dateFormatter: DateFormatter = {
 let formatter = DateFormatter()
 formatter.dateStyle = .long
 formatter.timeStyle = .short
 return formatter
 }()

 @TagBuilder
 func render(
 _ req: Request
) -> Tag {
 WebIndexTemplate(
 .init(title: context.post.title)
) {
 Div {
 Section {
 P(dateFormatter.string(from: context.post.date))
 H1(context.post.title)
 P(context.post.excerpt)
 }
 .class(["lead", "container"])

 Img(src: context.post.image, alt: context.post.title)

 Article {
 Text(context.post.content)
 }
 .class("container")
 }
 .id("post")
 }
 .render(req)
 }
}

The date is a special variable: since it's stored as a Date value, we can format it and print it
as a human-friendly representation with the help of a custom date formatter. The good news
is that template files are Swift files, so it's really easy to share a global date formatter to use
the same format, but this time a local variable will do just fine.

Apart from the date output, the snippet above follows pretty much the same logic as we had
in the blog template. The context that we used for it (BlogPostContext) contains a simple
post variable.

/// FILE: Sources/App/Modules/Blog/Templates/Contexts/BlogPostContext.swift

struct BlogPostContext {
 let post: BlogPost
}

In our controller, we have to find the first element that has a matching slug with the current
path of our URL string. If there's no match, we can simply redirect the browser to the home
screen, but if there's an article that has the given path, we can render it using the view
system. Add postView to the end of BlogFrontendController.

/// FILE: Sources/App/Modules/Blog/Controllers/BlogFrontendController.swift

import Vapor

struct BlogFrontendController {

 var posts: [BlogPost] = {
 stride(from: 1, to: 9, by: 1).map { index in
 BlogPost(
 title: "Sample post #\(index)",
 slug: "sample-post-\(index)",
 image: "/img/posts/\(String(format: "%02d", index + 1)).jpg",
 excerpt: "Lorem ipsum",
 date: Date().addingTimeInterval(-Double.random(in: 0...(86400 * 60))),
 category: Bool.random() ? "Sample category" : nil,
 content: "Lorem ipsum dolor sit amet."
)
 }.sorted() { $0.date > $1.date }
 }()

 func blogView(
 req: Request
) throws -> Response {
 let ctx = BlogPostsContext(
 icon: "" ",
 title: "Blog",
 message: "Hot news and stories about everything.",
 posts: posts
)
 return req.templates.renderHtml(
 BlogPostsTemplate(ctx)
)
 }

 func postView(
 req: Request
) throws -> Response {
 let slug = req.url.path.trimmingCharacters(
 in: .init(charactersIn: "/")
)
 guard let post = posts.first(where: { $0.slug == slug }) else {
 return req.redirect(to: "/")
 }
 let ctx = BlogPostContext(post: post)
 return req.templates.renderHtml(
 BlogPostTemplate(ctx)
)
 }
}

You can access the path of the URL via the req.url.path property. We need to trim it first
since we don't care about trailing and leading slashes; next, we can filter our blog posts to
see if there are any that match the given route.

This time we'll redirect to the home page if there was no match using a future response.
Otherwise, we'll display the post using the view renderer. Since the redirect method also
returns a Response, it's safe to return with it.

ROUTES AND PATH COMPONENTS
So, we were able to create our controller method; now the only question is: how do we
connect the handler to every single route that can have a possible matching path?

You need to know that you can catch all the routes using a route handler and the .anything
path component. There's also a .catchall case, the only difference between the two of them
is that anything (*) is just a single match for a path component, but the catch-all (**) case will
catch everything after the first / character including other sub-paths such as /foo/bar/.

In our case the .anything pattern will be enough, this is how we can use it:

/// FILE: Sources/App/Modules/Blog/BlogRouter.swift

import Vapor

struct BlogRouter: RouteCollection {

 let controller = BlogFrontendController()

 func boot(
 routes: RoutesBuilder
) throws {
 routes.get("blog", use: controller.blogView)
 routes.get(.anything, use: controller.postView)
 }
}

Build and run the application using the command line or Xcode. In your browser window
click on one of the blog posts and hopefully you should be able to read the full article.

From an SEO perspective, this approach is nice because of the clean URLs. That's one of the
most important factors during ranking. As a practice you can extend the index template with
some additional meta information; to support rich previews or, as an alternative, you can
move out the lead section and build a custom template for it.

CUSTOM MIDDLEWARES
Now if you enter the blog URL, notice that it'll work with a / suffix and without a trailing slash
character. This means that we can access every single URL using two versions of the same
path (e.g. /blog/ vs /blog). We can change this behavior, if needed, by hooking into the
"responder chain".

As I mentioned before, middlewares can hook into requests and alter their behavior. we're
going to place our custom middlewares into a Middlewares folder under the App/
Middleware folder we already created, and add a new ExtendPathMiddleware.swift file to it
with the following contents.

In a modern Vapor application, a middleware should conform to the AsyncMiddleware
protocol. This protocol uses the brand new async/await feature that's available from Swift
5.5. Of course, there's an older Middleware protocol that returns with an EventLoopFuture,
but it's clear to see that we should avoid that because it's way more complicated to work
with futures and promises. Let's just say for now that a function with an async signature is
something that you have to wait for; so for example, the next parameter is an
AsyncResponder, and this is why we have to put the await keyword before the method

when we call it. You can read more about async / await and concurrency on the official Swift
website.

/// FILE: Sources/App/Middlewares/ExtendPathMiddleware.swift

import Vapor

struct ExtendPathMiddleware: AsyncMiddleware {

 func respond(
 to req: Request,
 chainingTo next: AsyncResponder
) async throws -> Response {
 if !req.url.path.hasSuffix("/") && !req.url.path.contains(".") {
 return req.redirect(
 to: req.url.path + "/",
 redirectType: .permanent
)
 }
 return try await next.respond(
 to: req
)
 }
}

When a request arrives at the server, we're going to check if the path of the request URL has
a forward slash suffix when it doesn't contain an extension (dot character). If not, we can
simply redirect the client to a path that we would like to see, using a .permanent redirection
type. If the path contains a trailing slash, we can use the Responder object and "pass the
chain" to the next responder.

Think of this as a chain of request handlers that will be called one after another. Every
member of the chain can alter the request object, extend it with additional information (e.g.
authentication) or terminate the execution by sending a response. The final element in your
chain is usually the request handler that you register with the .get, .post, etc. methods on the
app or router instance.

Now that we defined a middleware, we still have to register it so it can be part of the chain.
We can do this in the configure.swift file using the middleware property on our application.

/// FILE: Sources/App/configure.swift

import Vapor

public func configure(
 _ app: Application
) throws {

 app.middleware.use(
 FileMiddleware(
 publicDirectory: app.directory.publicDirectory
)
)

 app.middleware.use(ExtendPathMiddleware())

 let routers: [RouteCollection] = [
 WebRouter(),
 BlogRouter(),
]
 for router in routers {
 try router.boot(routes: app.routes)
 }

}

In Vapor, it's relatively easy to alter the responder chain through middlewares. You can use
middleware for many things, and in this example, we were only scratching the surface. You
need to keep in mind that this little path extension middleware is only good for GET
requests. In a real-world server application, you might want to check the request method
and perform additional checking if you want to use such a middleware.

What about the last menu item? Let's use that empty web.js file that we created at the
beginning of the tutorial. We're going to simply display an alert, but of course, you can use
this template to spice up the website with some fancy animations.

/* FILE: Public/js/web.js */

function about() {
 alert("myPage\n\nversion 1.0.0");
}

That's the about menu, nothing serious for now, but I hope that this example gives you a
basic idea about how to import and use javascript files. You can use jQuery or anything else
to make your life better, but in this book, we're only going to write Vanilla JavaScript.

SUMMARY
This chapter was all about getting started with Vapor and the view templates. SwiftHtml is
real easy to start with: the most difficult part is when you have to create the connection
between the library and Vapor. Using a DSL to write type-safe HTML code is nice since the
compiler can catch your errors at build time and you'll make fewer mistakes. We've seen how
you can create modules to separate individual components in your application. Modules are
really powerful code organization tools; using standalone Routers and Controllers helps us
to maintain clean code everywhere. We've also learned about the fundamentals of routing
and played around a little bit with an async middleware. In the next chapter, we'll focus on
persisting blog entries into a local SQLite database using Fluent.

